

http://www.lyncwizard.com

Teams Wizard v0.5
by LyncWizard.com

Configuration Note: Contact Lookup External App

Date Version Remarks

2023-03-26 1.0 Initial Version

Configure External App for Contact Lookup

Overview
Contact Lookup External App allows you to attach Teams Wizard to almost all data source for

Reverse Phone Number Lookup, like:

• RESTful

• SOAP

• LDAP

• SQL

• …

If a contact lookup rule towards the External App is matching, Teams Wizard starts configured

External App with 2 arguments:

• PhoneNumber

• File path to store search result as JSON

After External App is executed or configured timeout expired, Teams Wizard reads content of

dynamic file path. If this file contains a valid JSON record, result will be presented.

External App can be any executable App, which does not need a user interaction to run, like:

• PowerShell Script

• Command Line

• EXE

• …

To develop such an External App some developer knowledge is required. A sample PowerShell script,

which executes a RESTful request is delivered with Teams Wizard.

With this concept, you are no longer dependent on what methods Teams Wizard offers for Contact

Lookup to attach your own data source.

External App is executed in context of Windows signed-in user.

Configure External App
To configure Contact Lookup External App, open Teams Wizard Configuration with a right click to

Systray Icon and choosing “Configuration”.

1. Open Tab “Contact Lookup”

2. Click to “External App” button. A new window opens:

3. Configure following parameters:

a. App Path

i. Full path to executable app.

ii. Example: powershell.exe

iii. For PowerShell scripts, add “powershell.exe”

iv. For Command Line (Batch Files), enter “cmd.exe”.

v. For VB- or Windows Scripts, use CScript.exe

vi. If you have an own EXE file, enter full path like “C:\Program

Files\CustomTool\Lookup.exe”

b. Arguments:

i. Add all required parameters to run script or executable. There are 2 strings

which will be replaced by specific values when app is started by Teams

Wizard:

1. <PhoneNumber>: This string will be replaced by phone number.

Format matches to regex result configured in “Replaces” column of

Contact Lookup search rules.

2. <OutputFile>: This string is replaced by a dynamic prepared temp

file, to which the external app must write result as JSON record.

ii. Example: -File "C:\ProgramData\LyncWizard.com\Teams
Wizard\ContactLookupExternalApp\Get-

ContactForTeamsWizard_Sample.ps1" -PhoneNumber

"<PhoneNumber>" -OutputFile "<OutputFile>"

iii. In case of PowerShell script, please make sure, PowerShell Execution Policy

allows running script (reference: https://learn.microsoft.com/en-

us/powershell/module/microsoft.powershell.security/set-executionpolicy)

c. Timeout in milliseconds:

i. How long Teams Wizard should wait for external app to finish. In case it is

not finished, Teams Wizard kills process of external app and continues as it

would have normal finished (see exceptions if Debug mode is enabled).

d. Debug mode:

i. For production, this check box should not be enabled. This makes sure,

External App is started in background without user interaction.

ii. Enabling Debug mode may help to develop, test and debug an External App.

iii. If enabled:

1. External App Window will be opened visible and user interaction is

possible.

2. Process will not be killed after timeout expires, but Teams Wizard

continues anyway.

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-executionpolicy
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-executionpolicy

Sample
A sample PowerShell script is installed to “C:\ProgramData\LyncWizard.com\Teams

Wizard\ContactLookupExternalApp\Get-ContactForTeamsWizard_Sample.ps1”.

Sample Script to query contacts from a Web Service for Teams Wizard Contact Lookup

Please make sure, PowerShell Execution Policy allows execution of this Script:
Set-ExecutionPolicy -ExecutionPolicy Unrestricted

After script execution is finished, Teams Wizard reads content of $OutputFile and deletes this file.
OutputFile must contain JSON. Following sample shows which values are used:
Valid Address Types: 0 = Unknown, 1 = Person, 2 = Organization
{
"Type": 2,
"Organisation": "LyncWizard.com",
"Title": null,
"Firstname": "Stephan",
"Name": "Kaufmann",
"AddressLine1": "Application Boulvevard 123",
"ZIP": "LW95123",
"City": "Wizard Town",
"Country": "Switzerland"
"TelephoneNumber": "+41991234567",
"MobileNumber": "+41997654321",
"DataSource": "External App: Static Entry",
}

If Web Service needs Authentication or Authorization, add corresponding Headers or Credentials:
- Basic Authentication by UserID and Password:
$UserID = "myUsername"
$Password = "my!Password1"
$Credentials = [System.Management.Automation.PSCredential]::new($UserID,(ConvertTo-SecureString $Password
-AsPlainText -Force))
$Contact = Invoke-RestMethod -Credential $Credentials -Method Get -Headers $Headers -Uri
"$($BaseURL)?PhoneNumber=%2B41991234567"

- Authorization with a Bearer Token:
$Headers = @{'Authorization'=("Bearer {0}" -f $Token)}

18.03.2023 StK v1.00 Initial Code

Params
param (
 [Parameter(Mandatory=$true)][string]$PhoneNumber,
 [Parameter(Mandatory=$true)][string]$OutputFile
)

Script
$Headers = @{}
$BaseURL = "https://www.lyncwizard.com/lyncwizard/SearchContact.json"
$PhoneNumberEncoded = [System.Web.HttpUtility]::UrlEncode($PhoneNumber)
$Contact = Invoke-RestMethod -Method Get -Headers $Headers -Uri
"$($BaseURL)?PhoneNumber=$($PhoneNumberEncoded)"

$Contact | ConvertTo-JSON -Depth 100 | Out-File -FilePath $OutputFile -Encoding oem

Default configuration for External App points to this script. This is only an example, do not use it for

production.

This sample executes an unauthenticated RESTful GET request. It also includes some hints how to

add authentication and authorization or changing GET to POST. With such a script, it is easy to realize

a RESTful API request towards any internet based services with OAUTH2 or any other authorization

methods as well as any local LDAP or SQL requests.

Search Result
Search result must be stored in file defined in parameter <OutputFile>. Content must be a JSON

record with following definition:

{
 "Type": "int",
 "Organisation": "string",
 "Title": "string",
 "Firstname": "string",
 "Name": "string",
 "AddressLine1": "string",
 "AddressLine2": "string",

 "ZIP": "string",
 "City": "string",
 "Country": "string"
 "TelephoneNumber": "string",
 "MobileNumber": "string",
 "CompleteAddress": "string",
 "DataSource": "string",
}

Key Type Value

Type Integer Type of address:
0 = undefined
1 = Person
Organization

Organization String Name of organization, null or empty if not used/known

Title String Title of person, null or empty if not used/known

Firstname String Given name/first name of person, null if not used/known

Name String Surname of person, null or empty if not used/know.

AddressLine1 String Postal address line 1, null or empty if not used/known

AddressLine2 String Postal address line 2, null or empty if not used/known

ZIP String Postal code, null or empty if not used/known

City String City, null or empty if not used/known

Country String Country, null if not used/known

TelephoneNumber String Found phone number, null or empty if not used/known

MobileNumber String Found mobile number, null or empty if not used/known

CompleteAddress String Multi Line string containing full address block, if contact
information are not available with specific fields. Null or empty if
not used.
Do not mix CompleteAddress with other specific fields except
Type and DataSource

DataSource String Reference to used data base to fulfill copyright/term of use
conditions. Some public reachable contact data bases require to
present source of displayed result.
Null or empty if not required.

Configure Contact Lookup Rules
If External App is configured correctly, you can add this external app as data source in contact

lookup.

1. Open “Teams Wizard Configuration” window tab “Contact Lookup”:

2. Click to “Edit Data sources”. A new window opens:

3. Define a rule with data base “External App”

a. Order: Value defines order of execution (from lowest to highest). First match stops

execution.

b. RegEx: ^(\+41\d+) = matches to all Swiss phone numbers (leading +41 followed by

one or more digits). If you enter an invalid RegEx, you get a red marking.

c. Replace: $0 = Full phone number, $1=first group (parenthesis), $2=second group, etc.

d. Data base: “External App”

e. Cut: In case no results can be found, how many times search can be repeated with

removing a digit at the end of the phone number. For External App, 0 is preferred

value, because this behavior can be developed more specific inside your External

App.

Testing and Debugging
To check overall function, activate debug logging on the “General” tab, and restart Teams Wizard to

activate debug logging:

Teams Wizard creates in your temp Directory “C:\Users\<Username>\AppData\Local\Temp” a file

“TeamsWizard.log” with a lot of useful information for analyzing. You can open it with any text

editors like Notepad.

Enable Debugging mode on External App Configuration, to see window and content of External App.

Don’t to forget to disable “Debug Mode” after testing.

For testing your External App, you can use Hotkey feature of Teams Wizard instead of making

incoming calls. Just write phone number to a text file.

Highlight this number and press hotkey (default [F8]). Hotkey window opens. Click to “Lookup”. Now

contact lookup rules will be executed similar to an incoming call. Result will be presented in hotkey

window result area instead of notification window.

In %Temp%\TeamsWizard.log you find some more details to verify and validate execution:

